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Internal separated flows at large Reynolds number 
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Large-Reynolds-number analysis is given for separated flows that have the character- 
istic feature of being confined in the transverse direction. Two principal limits of the 
governing equation are obtained depending on whether the streamwise length scale is 
of order one or of the order of the Reynolds number. The corresponding two types of 
separated flows are discussed. A method of calculation is givenfor the second type of 
flow. It employs an expansion in the eigenfunctions of the Poiseuille flow development 
and the problem is reduced to solving nonlinear first-order ordinary differential 
equations that have a tendency to decouple rapidly. The method is tested by a detailed 
comparison of the results of the present calculation with finite-difference solutions of 
the Navier-Stokes equations for a channel with sudden expansion. Applicability to 
other configurations is illustrated by solving the problem of the flow in a channel with 
a base. 

1. Introduction 
A large-Reynolds-number solution of attached flow past a body can be obtained by 

using perturbation techniques. However when the flow separates from the body, it 
presents certain difficulties which are not yet well understood. In this paper we exam- 
ine internal separated flows (figure 1) which are less complex than external separated 
flows. Although the interplay between the wake and the outer flow is absent in the 
present case, there are other features which are common with external separated flows, 
e.g. thick recirculating regions. The major simplifying feature is that the transverse 
length scale is of order one on account of the walls confining the flow. 

Hung & Macagno (1966) have obtained a finite-difference solution of the Navier- 
Stokes equations for internal separated flow in a channel with a symmetric sudden 
expansion. Morihara (1972) has also solved this problem by using a finite-difference 
scheme. Flow in a gradually widening channel has been considered by Dorodnitsyn & 
Meller (1970). Numerical investigation of separated flow in a channel with a back-step, 
or with single or multiple obstructions, has been carried out by Nallasamy (1975). 
Other internal separated flows studied by various investigators include a channel with 
a constriction (Greenspan 1969; Friedman 1972; Cheng 1972), a channel with a back- 
step (Mueller & O’Leary 1970; Roache & Mueller 1970; Taylor & Ndefo 1970), a 
channel with a forward-step (Greenspan 1969), a channel with a base (Mueller & 
O’Leary 1970) and a channel wth a symmetric contraction (Morihara 1972). However 
these investigators have been concerned primarily with computational procedures. 

We first consider large-Reynolds-number limits of the governing equation; atten- 
tion is focused on limit equations. Two types of separated flows, suggested by the two 
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FIGURE 1. Internal separated flow problems. (a) A channel with a symmetric sudden expansion. 
( b )  A channel with a base. 

limit equations, are discussed. A method of calculation based on the appropriate limit 
equation is developed for the types of separated flow shown in figure 1.  The method 
uses an expansion in the eigenfunctions of the Poiseuille-flow development. Cal- 
culations require the solution of a set of ordinary differential equations that get 
progressively decoupled in the downstream direction. Results have been obtained 
for configurations in which the channel has a symmetric expansion, a back-step or 
a base (Kumar 1976). A few of these results are discussed in this paper. 

2. Limit equations 

tonian fluid. The governing equation in the non-dimensional form is 
We consider steady, two-dimensional laminar motion of an incompressible New- 

where $ is the stream-function, R is the Reynolds number, and suffixes x and y denote 
partial derivatives. 

Let the length scales in the x and y directions be L, and L,, and the scale of the 
streamwise velocity u be U .  The transverse length scale L, is of order one in the present 
set of problems. If we examine possible limits for the bulk of the flow region where 
U N 1 we find that there are two principal limits corresponding to L, - 1 and L, N R,  
if the flow velocity is bounded.? The limit equation for Lx - 1 is the Euler equation 

t Various limit equations of (1) and their domains of validity are considered by Kumar (1976). 
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The limit equation for L, - R is 

Limit equation (2) is elliptic in nature whereas (3) is a parabolic equation. We therefore 
expect that  (2) applies to both the upstream and the downstream type of effects and 
(3) to the downstream type of effect only. 

The applicability of the two principal limits can be illustrated by considering the 
spatial behaviour of disturbances of Poiseuille flow. A small perturbation analysis 
based on the Navier-Stokes equations is given by Wilson (1969). Perturbation which 
is of the form $(y) exp ( - Ax) leads to an eigenvalue problem which has two sequences 
of eigenvalues for large €2. The first sequence contains eigenvalues of order one, and the 
other, of order 1/R. An eigenvalue of order one implies that the perturbation decays 
over a distance of order one. These eigenvalues are positive as well as negative, and 
therefore the associated perturbations are felt downstream and upstream. The eigen- 
values of the second sequence are such that the perturbation decays over a distance of 
order R in the downstream direction. The disturbances are thus felt upstream up to a 
distance of order one and downstream up to a distance of order R. Both the limiting 
eigenvalue problems considered by Wilson can be obtained from (2) and (3). The order 
of the eigenvalues and their signs are thus what may be expected from the nature of (2) 
and (3). 

3. Two classes of internal separated flow 
The two limit equations suggest that there are two classes of flows where either (2) 

or (3) characterizes the large-Reynolds-number behaviour. It is understood that there 
might be subregions where the solution of (2) or (3) is singular and therefore supple- 
mentary limits are required. 

Two simple configurations illustrating these situations are given in figure 2. In the 
case of sudden contraction, the flow separates upstream of the configuration respon- 
sible for it. We then expect such flows to be governed by (2). These flows are 
essentially inviscid. In  such cases the arguments of Prandtl (1904) and Batchelor 
(1956) would be applicable to the recirculating regi0n.t 

Flow separation occurs in the case of sudden expansion on the downstream side. 
While it is compatible with both (2) and (3), the latter is expected to govern the bulk 
of the flow, as its associated streamwise length scale is larger. The streamwise length 
scale for such flow will therefore be of order R. That is, a typical length scale, such as the 
length of the recirculating region, behaves as R; this conclusion can also be reached by 
the following argument. When L, N 1 and Lu N 1 ,  viscous terms are of higher order. 
In  this ‘near’ limit, the flow is governed by the Euler equation whose solution allows 
discontinuous surfaces. One such surface is along the separating streamline. A vorticity 
layer is required for the vorticity to diffuse in the recirculating region. The thickness of 
this layer is of order ( x / R ) f ,  and therefore for any fixed x ,  it shrinks to zero in the limit. 

t Applicability of (2) requires that L, is of order one for such flows. On the other hmd, Smith 
(1977) has given an analysis which applies only to asymmetric flows, and which requires the 
upstream length scale to increase as RS. However, we are of the view that it is unlikely that the 
length of the  upstream recirculating region increases I~definitely with Reynolds number. 
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PICURE 2. Schematic diagrams of two types of internal separated flow: 
(a) first type; (b) second type. 

When x - R, the vorticity layer thickness is of the order of the transverse length scale 
of the channel itself. The ‘near’ limit is therefore inapplicable when x - R. A ‘far’ 
limit given by L, - R is required which leads to (3).  While this argument brings out the 
nature of the separated flow downstream of a sudden expansion, a similar argument 
does not reveal the nature of the separated flow upstream of a sudden contraction. 

We now examine earlier numerical calculations to test the above conclusions regard- 
ing the two different types of separated flows. We look for the streamwise length scale 
in these calculations. 

Hung & Macagno (1966) have obtained the finite-difference solution of the Navier- 
Stokes equations for flow in a channel with a symmetric sudden expansion. Velocity 
profile upstream of the expansion is taken to be parabolic. Figure 3 shows the be- 
haviour of the distance of the point of reattachment and the distance of the centre of 
the eddy measured from the expansion. A linear trend is clearly seen for large R. 
Results obtained by Morihara (1972) for the above problem also show a linear trend 
(figure 3). 

Mueller & O’Leary ( 1970) have done numerical calculations as well as experiments 
on a channel with a back-step and with a base. Their results show that for large Rey- 
nolds number the reattachment length and the distance of the centre of eddy from the 
step vary linearly with the Reynolds number. A similar trend is also shown by the 
calculation for flow past a square proturberance in a Couette flow (Kitchens 1974). 

Cheng ( 1  972) has given finite element solutions of the Navier-Stokes equations 
for values of R up to 100 for flow in a channel with a smooth constriction. Upstream 
separation does not occur for the range of R considered. However the effect of the 
constriction can be inferred from the plot of wall vorticity for different values of R. 
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FIGURE 3. Variation of streamwise length scale with R. -, Hung & Macagno (1966) ; 
, Morihara (1972). 

While the upstream influence is confined to a short distance, the extent of down- 
stream influence increases with R.? 

Flow in the presence of a two-dimensional grid is considered by Kovasznay (1948). 
As L, N 1,  the present arguments about the limiting behaviour of the flow upstream 
and downstream of the grid would be applicable. A study of the solutions of the Oseen 
equations also shows qualitative agreement, namely that the flow upstream of the grid 
is affected up to a length of order one while that downstream up to a length of order R.  
These solutions include the flows given by Kovasznay. 

Thus the earlier calculations based on the Navier-Stokes equations support our 
view of two qualitatively different types of separated flows. They differ in their respec- 
tive streamwise length scales and the limit equations governing the bulk of the flow. 
The recirculating region which occurs ahead of a contraction is essentially inviscid. 
However, the dynamics of the recirculating region appearing downstream of an expan- 
sion is such that viscous forces, being of the same order as inertia forces, are retained. 
Internal separated flows of this class are further examined in the following sections. 

t Similar conclusions can also be drawn for the axisymmetric cam and they are supported by 
numerical calculations based on complete equations (see appendix A). 
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4. Formulation of the problem 
Consider the flow in a channel with a sudden expansion which belongs to the second 

type of internal separated flow as a prototype for our discussion here. The flow down- 
stream of the expansion is divided into two subregions corresponding to L, ,., 1 and 
Lx N R.  The limit equation for the ‘far ’ region (L, N R )  is (3). As a result of the limiting 
process, three derivatives in x are lost. Therefore (3) can satisfy only one condition in z, 
which is obtained by matching with the solution for the ‘near’ region (L, - 1). 

The ‘near’ region solution is in general difficult to construct. In  the case of a parallel 
incoming flow, a possible free-streamline solution of the Euler equation consists of the 
incoming flow and a zero velocity behind the step. That is, the incoming flow goes 
undisturbed through the ‘near’ region to the lowest order. Although there are an 
infinite number of solutions of the Euler equation, the above solution would seem a 
likely candidate that matches with the far downstream flow. 

The equation governing the ‘far’ region can be written as 

$YYX - $x 1c.,Y, = h i Y Y Y ,  (4) 

where the x co-ordinate has been scaled by R. Unless otherwise stated, x would hence- 
forth imply the contracted streamwise co-ordinate. R is based on the average velocity 
and the half-width of the channel downstream of the expansion. 

Since the ‘near’ region shrinks to x = 0 in the newly scaled co-ordinate, (4) can be 
regarded as the field equation for x > 0. The initial condition required for the integra- 
tion of (4) is obtained from matching 

$(Z+O,Y) = $o(Y). ( 5 )  

This condition is equivalent to prescribing uo, the streamwise velocity at  the inlet 
section. The incoming flow is taken to be a parallel flow in the examples considered in 
this paper. Then uo is the incoming flow velocity distribution. The conditions a t  the 
walls require 

@ = 5 1 ,  $ u = O  at y = f l .  (6) 

The problem then is to obtain the solution of (4) satisfying conditions ( 5 )  and (6). 
Equation (4) can be integrated once with respect to y. The constant of integration is the 
pressure gradient. However, it is preferable to work with (4) than with its integral. 

The limit equation (4) is similar to the boundary-layer equations. However, it should 
be noted that the viscous region has a thickness of order one whereas the thickness ofthe 
classical boundary layer is of order R-4. Also, instead of pressure being impressed by 
the external flow, it has to be obtained as a part of the calculation here. This is possible 
as there are four boundary conditions in y. The confinement of the flow can thus be 
said to generate its own pressure field. 

In  the presence of reverse flow, (4) is said to be of t,he mixed parabolic type. The 
theory of such equations has not yet been sufficiently developed to indicate the bound- 
ary conditions which would lead to a solution. The present problem arises from a limit 
process on an elliptic equation which presumably has a solution whose above limit 
exists. It is then reasonable to assume that the problem posed here has a solution. 
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5. Method of solution 
Numerical integration of parabolic equation is usually performed by a marching 

type, finite-difference scheme. However, Klemp & Acrivos (l972), Klineberg & 
Steger (1974) and Carter (1975) have used iterative finite-difference schemes to inte- 
grate the boundary-layer equations. I n  these schemes the x derivatives are differenced 
depending on the direction of the flow.? A marching type finite-difference scheme is 
used by Catherall & Mangler (1966) to solve for boundary layer with separation and 
reattachment. 

We use an integral relations method of solution. The method requires a set of 
functions for expansion and a set of weighting functions. The functions are chosen for 
their properties. While series representations with a large number of terms, as many as 
fifty, have been used, a judicious choice of expansion and weighting functions can 
considerably reduce the computation. The flow at large downstream distances is a 
small perturbation of the Poiseuille flow which leads to a linear eigenvalue problem. 
I ts  eigenfunctions are used as the expansion set whose coefficients depend on the 
streamwise co-ordinate. The eigenfunctions of the adjoint problem are the weighting 
functions. The resulting set of coupled ordinary differential equations tend to get 
progressively decoupled with streamwise distance. These functions are in this sense 
natural to the present problem. 

5.1. The eigenvalue problem 

We first review the eigenvalue problem. The channel flow develops into Poiseuille 
flow $p  = i(3y- y3) .  Let 11. be expressed as a sum of I+9p and a perturbation The 
equation governing is then obtained from (4) as 

$I,,,, - $‘p 11.1UYX + 11.>@1x = 11.1, 11.1,,x - 11.1x 11.1,,v, (7) 

where primes denote differentiation. When 
be neglected and we get the linearized equation, 

is small, the quadratic terms in may 

11.1,yuy - Q ( 1 -  Y 2 )  11.1,UZ - 3@1x = 0. (8) 

The above equation has solutions of the form 

11.1 = 4 ( Y ) e - A x ,  (9) 

where Q is an eigenfunction and h the corresponding eigenvalue of the eigenvalue 
problem, 

#‘‘+h[#(1-y2)#’’+3#] = 0, 

# = # ‘ = o  a t  y = + l .  (10) 

t Such schemes are sometimes regarded as devices to incorporate upstream influence in the 
reverse flow region. However, the associated differencing error is equivalent t o  introducing cer- 
tain higher-order derivatives into the equation (Kumar 1978). It would therefore seem that the 
numerical scheme provides a mechanism for upstream influence. As the coefficients of the higher- 
order derivatives are proportional to certain positive powers of the step size, this mechanism of 
upstream influence tends to vanish as the step size is reduced. Detailed numerical experiments 
(Kumar 1978) support this view. 
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m. Odd Even 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 

14.46 

48.87 

104.43 

181.25 

279.38 

18.81 

67-62 

117.30 

198.26 

300.50 

TABLE 1. Eigenvalues of equation (10). 

Clearly, the solutions of (10) can be separated into even and odd solutions. An eigen- 
function is called even or odd depending on the symmetry or the antisymmetry of 4’ 
which is related to the streamwise velocity component. 

Equation (10) can be integrated once and the constant of integration, which is 
related to the pressure gradient, turns out to be zero for odd eigenfunctions. Conse- 
quently, the pressure field is uniform in the case of a small antisymmetric streamwise 
velocity perturbation. 

Wilson (1969) has obtained (10) as the equation governing the leading term in a 
large R expansion and has shown that the odd eigenvalues are real. A similar result is 
not available for even eigenvalues. However, if the eigenvalues of (10) are real, they 
can be shown to be positive by multiplying (10) by 4 and integrating by parts. Based 
on the numerical evidence we have taken the eigenvalues to be real. 

Table 1 contains the first ten eigenva1ues.t They are numbered in increazing order 
and are alternately odd and even. The lowest eigenvalue is odd, and hence the velocity 
perturbation which persists the longest is antisymmetric. The first five eigenvalues are 
in agreement with those given by Wilson (1969). 

Analysis of equation (10) for large A ,  which is somewhat similar to that for the Orr- 
Sommerfeld equation, gives (Kumar 1977) 

A, N 3$-(n+&)2 m = 2n+ 1 odd, ( I l a )  

A, - 3*-(n + $)2 m = 2n + 2 even. ( l i b )  

The adjoint eigenvalue problem is 

Oiv+A[Q(l-~~~)6”’-6yO’] = 0, 

8=0’=0 at I J = + ~ .  ( 1 2 )  

If & and 8, are eigenfunctions of (10) and (12) respectively and the corresponding 
eigenvalues are Ap and ‘hp, it can be shown that 

t These values are obtained by using the Runge-Kutta-Gill method of integration with a 
step size of 0.02 and double preoision. Further ten eigenvalues are given by Kumar (1977).  
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We assume that the functions satisfying certain conditions can be expanded in a 
convergent series of the eigenfunctions +m. Let f be expanded as 

m 

f =  Z; bm+m* 
m= 1 

The coefficient b, is then obtained by multiplying (14) by r9g and integrating, 
1 

-1 
b, = G;l/ f S E  dy, (15) 

where 

If Pl is sufficiently small so that the linear equation (8) can be used for x 3 xo, the 
solution is given by 

m 

where 

5.2. The eigenfunction expansion method 

The method of calculationi is based on taking the stream function in the form 

3% Y 1 = 1crP(Y) + $l(G Y), 

= $P(Y) + I: am(%) 4 m f Y ) .  (18) 

We truncate the series after, say, N terms. Only even eigenfunctions are considered in 
a symmetric solution and the index m runs over the first N even eigenfunctions. The 
following N ordinary differential equations are obtained by substituting (18) in (a), 
multiplying by 0, and integrating. 

m 

where 

The first term on the left-hand side in (19) arises from the linearized part of the inertia 
term whereas the transverse viscous diffusion is represented by the second term. The 
nonlinear interaction of the modes is given by the terms on the right-hand side. 

t This method is designed for the homogeneous boundary conditions (6).  There are many 
variatiohs of the problems in which the bowndary conditions have a different form, e.g. curved 
walls, non-zero ta-ngmtial or normal velocity. The method described here is not expected to 
apply to these situations without some modification. 

$ If another set of functions,f,, e.g. polynomials, are used in the place of the eigenfunctions, 
one obtains a set of differential equations similar to (19) but with different coefficients, that is 

X ( D m n a i + A m n a n )  = X Z c m v r z a a a , ,  
n P q  

where D,,, A,, and C,,, are integrals depending onf". Clearly, (19) is a particular case of the 
above. However, the use of q!~,~ has certain advantages 8.9 we shall SOB. 

2-2 
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FIGURE 4. Centre-line velocity distribution for the entry flow in a channel. ---, Kumar & Yajnik 
(1976); ---, Morihara (1972), R = 1000; -.-.-, Wang & Longwell (1964), R = 75. 

The initial condition for (19) is obtained by evaluating (18) at x = 0, multiplying by 
0: and integrating, 

If +1(0, y) is piecewise twice differentiable, the above relation can be simplified to 

1 

-1 
a,, = G G ~  / $; e; dy. (22) 

The problem is thus reduced to solving a set of N first-order ordinary differentia1 
equations (19), subject to the initial condition (21). These equations are coupled, 
quasi-linear and autonomous.t 

6. Illustrative calculations 
The entry Aow in a channel is first considered with a view to test the method of 

calculation. Morihara (1972), Wang & Longwell (1964) and Gillis & Brandt (1964) 
have made finite-difference calculations of the Navier-Stokes equations €or this prob- 
lem. Centre-line velocity, pressure gradient, and skin friction obtained by the present 
method are compared with the earlier results (Kumar & Yajnik 1976). Figure 4 com- 
pares the present centre-line velocity distribution with those given by Morihara 
(1972) and Wang & Longwell (1964). The calculation of Morihara is for a uniform 

t Equation (19) can be written in the form 

E (8rnv-ZCrnmag) a; = - A m a m ,  
P P 

where am, is the Kronecker delta. These equations are linear algebraic equations for a: for given 
a, a t  a certain x and they can be solved provided the determinant D of the coefficient matrix is not 
zero. If D becomes zero at  any x during the calculation of a solution, the calculation cannot in 
general be executed. This is further discussed in appendix R. 
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inlet flow, while the flow is taken by Wang & Longwell to be uniform far upstream of 
the inlet. The comparisons are found to be good slightly away from the inlet. Also, the 
calculated velocity profiles show qualitative features like a boundary layer with a 
uniform central core as assumed by Schlichting (1934), over a certain intermediate 
range of x (Kumar & Yajnik 1976). It is also found that the addition of higher modes 
improves the agreement near the inlet. 

Several problems involving recirculating regions have been solved by the present 
method whose results are described elsewhere (Kumar 1976). Here we restrict ourselves 
to a discussion of two separated flow calcu1ations.t The first problem, which also 
serves a*s a test case, deals with flow in a channel with a sudden expansion. Flow behind 
a base in a channel is considered next. 

6.1. Channel with a symmetric sudden expansion 

The entry flow u, is taken to be parabolic 

= O  h < y < l ,  (23) 

where h is the half-width of the channel upstream of the expansion. The ratio of 
expansion defined as the ratio of downstream channel width to that upstream of the 
expansion, is given by l / h .  The initial condition a,, obtained from (23) by using (21) 
or (22) is 

a,, = - 6 [ h u h )  - ~ , , ( h ) i / ( ~ , h 3 ) ,  (24) 

where Gm is given by (16). The calculations with N = 2, 3 and 5 are sufficient to bring 
out the main features of the solution as well as the method. 

The assumed parabolic entry profile (23) is shown in figure 5 with its approximations. 
We find that  the approximation of the given velocity profile improves with increasing 
N .  Table 2 compares the centre-line velocity u,, and the associated momentum flux 
M ,  with the actual value. Clearly, the approximation tends to improve with the inclu- 
sion of higher modes. 

Streamlines based on the calculation with N = 3 for h = 0.5 are compared in figure 
6 with those given by Hung & Macagno (1966). It is seen that the present streamline 
pattern is in good qualitative agreement with that obtained by Hung & Macagno. The 
flow characteristics are compared in table 3. x, and xe are streamwise co-ordinates of 
the point of reattachment and the centre of the eddy respectively. Total recirculation 
in one eddy is given by ($e - l), and w+, ,~  denotes the minimum vorticity a t  the upper 
wail of the channel which is proportional to minimum wall shear. The quantitative 
predictions are also seen to be in good agreement. 

t The integration procedure adopted for (19) proceeds in the phase space. At each step of inte- 
gration on a,,, for which 1.11 is the largest, is chosen to be the independent variable. A predictor- 
corrector method with variable step size is used. An outline of the computer programme is given in 
Kumar (1976). Also a step size along y of 0.05 is used to obtain the eigenfunctions required to 
evaluate C,,,. A finer step size would be needed for higher eigenfunctions as they oscillatemore 
rapidly. 
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0 1 2 3 
1t 

FIGURE 5. Representation of the entry condition, h = 0.5. ---, given. Represented: -, N = 2; 
-.-._ , N = 3; -.._ .._ , N = 5 .  

N 2 3 5 Given 
U C O  3.188 2.937 3.025 3.0 
Mo 2.555 2.385 2.384 2.4 

TABLE 2. Representation of the entry profile for symmetric sudden expansion (h  = 0.5). 

Xr 2' ( $ 0 -  1) W+,h 

Hung & Macagno (1966) 0.066 0.0 13 0.052 - 2.82 
Present calculation, N = 3 0.064 0.014 0.045 - 2.19 

TABLE 3. Comparison of present calculation ( h  = 0.5) with that of Hung & Macagno (1966). 

The centre-line velocity u, is shown in figure 7. Calculations with N = 3 and 5 give 
almost the same u, except very close to the expansion. Although a very small number 
of terms are used, the results indicate a convergent trend. Velocity profiles a t  various 
streamwise locations are shown in figure 8. 
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FIGURE 6. Streamlines obtained by the present method (top half of figure) and given by Hung 
&. Macagno (1966) (bottom half of figure), h = 0.5, N = 3. R = 46.6 for Hung & Macagno 
results. 

Pressure gradient and wall-vorticity are shown in figures 9 and 10 respectively. The 
effects of increase in N are most felt close to the expansion and they are generally 
larger than those on the centre-line velocity. This is due to the dependence of dpldx 
and w on the third and second derivatives of the eigenfunctions respectively. But, as 
a,@) for the higher modes decay more rapidly, the calculations show a convergent 
trend away from the inlet. We expect that the results close to the inlet can be improved 
by increasing N .  However, if the interest is mainly in flow features away from the 
inlet, a few terms are adequate to give good results. 

Pressure is obtained by integrating dpldx (figure 11) .  The curve at large x is trans- 
lated by the integrated effect of changes in dpldx near the inlet as N is increased. It is 
to be noted that the point of reattachment, also shown in figure 11, precedes a region 
where pressure levels off, which is a common feature of separated flows. 
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FIGURE 7. Centre-line velocity distribution, h = 0-5.  ---, N = 2; ---.- , N =  3;- , N = 5 .  

x = o  0.02 0.04 0.06 0.08 0.1 

0 1 1 3 

U 

FIGURE 8. Streamwise velocity profile at various x, h = 0.5. N = 3. 
-, calculated; ---, given at x = 0. 
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0.1 \. 0.2 0.3 
X 

m 

FIGURE 9. Distribution of pressure gradient, h = 0-5. ---, N = 2; -*-.- , N = 3; -, N = 5 .  

a+ 

-3 

FIGURE 10. Distribution of vorticity at the upper wall, h = 0.5. The lines are as in figure 9. 
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0 0.1 0.2 0.3 
X 

FIGURE 11. Pressure distribution, h = 0.5. The lines are as in figure 9. 
A denotes point of reattachment. 

N Xr X d  p, 
2 0.0659 0.2839 1.320 
3 0.0638 0.2779 1.234 
5 0.0656 0.2775 1.390 

TABLE 4. Comparison of calculations with different N (h  = 0.5). 

Table 4 comparesx,, the development length xd, and the pressure recovery coefficient 
P,for different N . t  It is seen that the prediction of x, and xd is not sensitive to N .  The 
effect of N on P, is larger which is to be expected for the reason mentioned earlier. 

Figure 12 shows the effect of the expansion ratio l / h  on the reattachment length. 
x, is seen to decrease from about 0.15 to zero as h increases.$ 

t The dcvelopment length is defined as the smallest value of x beyond which the centre-line 
velocity differs from its asymptotic value a t  most by 1 yo. P, is the intercept on the p axis of the 
asymptote to p ( x )  curve. Pressure recovery coefficient, as it is conventionally defined, is 2P,. In 
practice, the numerical calculation is terminated when a, s are sufficiently small to permit the 
linearization, and (17) is used to extend the computation to downstream infinity (see appendix C).  
1 Reattachment is not obtained with N < 5 for h = 0.9 and 0.95. More terms are needed for a 

very nmdl ba,ck-st,ep to predict such details nccnrat,ely. 
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FIGURE 12. The effect of expansion ratio ( l / h )  on the reattachment length. 0, present calculation; 
0, Durst etal .  (1974), h = +, R = 18.67; + ,Hung & Macagno (1966), h = 0.5, R = 46.6. 

11 

Durst, Melling & Whitelaw (1974) have calculated the flow using the Navier- 
Stokes equation for h = Q. The upstream condition used in their calculation is derived 
from experiment, and is believed to be parabolic. Their value of x, is also shown 
in figure 12, Although R in their calculation is moderately large, xr obtained by them 
is in excellent agreement with the present results. Effects of expansion ratio and 
uniform inlet condition on other quantities is described elsewhere (Kumar & Yajnik 
1977). 

6.2. Channel with a base 

The second example considered is the flow behind a base placed symmetrically in a 
channel (figure 1 b) .  The velocity profile upstream of the base is taken to be parabolic, 

u = O  O < y < h ,  

= 6(y-h)( l -y) / ( l -h)3  h < y < 1, ( 2 5 )  

where h is the half-width of the base. The initial condition an,,, is then given by 

The initial condition as approximated with different N is shown in figure 13. It is 
seen that the given initial condition (25) is approximated better as N is increased. 
Centre-line velocity uco and the associated momentum flux M ,  given in table 5 show 
the tendency to approach to their given value with inclusion of higher modes. 

The streamline pattern is shown in figure 14. A recirculating region behind the base 
is obtained, The streamline pattern near the base shows a slight waviness which is 
probably due to the representation of the initial condition. Table 6 summarizes the 
main flow features given by the calculation with N = 5. 
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FIGURE 13. Representation of the entry velocity profile for the channel with a base, h = 0.25. 
-, given. Represented: ---, N = 2; ---.-, N =  3;-..-..- , N = 5 .  

N 2 3 5 Given 

MO 1.6139 1.5978 1.5984 1.6 

TABLE 5. Representation of the entry profile for the base in a channel (h  = 0.25). 

%O -0.1817 0.0368 0.0287 0 

Mueller & O’Leary (1970) have considered the flow behind a base experimentally as 
well as numerically. Flow upstream of the base is a uniform flow with a boundary 
layer. Also a ‘lid condition’ is imposed on the channel walls which are six base half- 
widths away from the centre-line. Their calculations show that the ratio of reattach- 
ment length to base half-width approaches a value 0-056 times R,, the Reynolds 
number used by them. The present calculation gives zr/h = 0.028 for parabolic inlet 
condition. This means that the ratio of reattachment length to base half-width is 
0.028 times R. If a Reynolds number based on base half-width and maximum velocity 
upstream of the base is used, the coefficient of proportionality becomes 0.056. Also, 
x,/xr is 0.343 while that obtained by Mueller & O’Leary is 0.357. 
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FIGURE 14. Streamlines obtained by the present method for the channel 
with a base, h = 0.25, N = 5. 

Point of reattachment, x, 
Maximum half-width of the recirculating region 
Location of the centre of the eddy, 

% 
Y E  

Recirculation in one eddy, - 
Maximum reversed flow velocity at the centre-line 
Development length, xd 
Pressure recovery coefficient, P, 

TABLE 6. Base in a channel ( h  = 0.25). 

0.007 
0,264 

0.0024 
0.146 
0.021 

- 0.2198 
0.201 

- 0-116 

7. Concluding remarks 
The results obtained by the present method in the first example compare well with 

those of Hung & Macagno (1966) based on the Navier-Stokes equations, although 
only a few terms are used in the calculation. Not only the gross quantities of interest 
such as the length of the recirculating region and the recirculation are found to agree 
well, but also the streamline pattern. Furthermore, reattachment length calculated 
by Durst et al. (1974) is in good agreement with the present result (figure 12). These 
comparisons give us confidence in the present method of calculation. In  particular, 
they demonstrate the applicability of the limit equation (4) to this type of internal 
separated flows. 

As the present method requires solution of only a few ordinary differential equations, 
it  is quite simple. A special feature of the method is that the equations (19) have a 
tendency to get progressively decoupled. It is a consequence of the use of eigen- 
functions of the Poiseuille flow development. Further, when the absolute values of 
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a,,& become sufficiently small, the linearized solution (17) can be employed which adds 
to the efficiency of the method. Typical computation time is 25 s on IBM 360144 
inclusive of the computation of eigenfunctions. 

Appendix A. Axisymmetric internal separated flow 
Equations governing the flow are (Macagno & Hung 1967) 

where x and r are the axial and the radial co-ordinates, and $ the Stokes stream func- 
tion; R is the Reynolds number. 

We have r - I and @ N 1. Let the scale of x be L,. As the flow velocity is bounded 
L, 2 1 ;  then T,I N 1 from (A 2).  The left-hand side of (A 1)  is of order 1/L, whereas the 
order of the terms on the right-hand side is 1/R. The two principal limits are those 
corresponding to L, N 1 and L, - R as obtained for the plane flow. When L, N 1, the 
limit equation is the inviscid equation, while for L, - R, viscous terms are of the same 
order as inertia terms and the limit equation is parabolic. We can once again argue 
that for the upstream effect L, - 1 and the extent of downstream effect is of order R. 

It is seen from the calculation of Macagno & Hung (1967) that for large R the length 
of the separated region downstream of the expansion in a pipe increases linearly with 
R. A detailed numerical investigation of flow in a pipe with a smooth constriction has 
been carried out by Deshpande, Giddens & Mabon (1976) who considered four cases of 
constrictions. For one case the calculations are performed for R up to 2000 and show 
that the length of the recirculating region forming downstream of the constriction 
varies linearly with R. Separation upstream of the constriction is not obtained for the 
range of R considered. However, the region of upstream influence can be assessed from 
the plots of wall-vorticity and centre-line velocity (see also Deshpande 1977). It is 
seen that the upstream influence is limited toashort distance and does not show depend- 
ence on R, and hence L, - 1.  

Appendix B. Comments on the equation (19) 
Equation (19) is of the form 

Ca' = - Aa, fB 1 )  

where a is a N-vector whose elements are a,, a2, . . .) aN, and C and A are N x N matrices. 
The derivative a' can be calculated provided D,  the determinant of C, is non-zero. The 
integration procedure, therefore, can break down for the chosen value of N if D becomes 
zero at  any x. This is a general feature of the integral relations method and is further 
illustrated by considering the phase space. 

The equation governing an integral curve in the N-dimensional phase space whose 
co-ordinates are a,, a2, ..., a,, is 

da,/D, = da2/D2 = ... = da,/D,,., (B 2) 
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D < k  u,,, :< 
D = O  3 

( h )  
FIGURE 13. Behaviour of an integral curve across D = 0. D,  is taken to be positive. The direc- 
tion in inoreasing 2 points outward from D = 0 in source type (a) and inward in sink type (21) of 
singularity. 

where B, is the determinant of the matrix obtained by replacing the mth column of C 
by the vector on the right-hand side of (B 1). The evolution of a, with respect to x, 
which can be regarded as a parameter of the integral curve um(x),  can be obtained by 
solving 

a& = Dm/D.  (B 3) 

The origin of the phase space corresponds to the fully developed flow and therefore a 
solution describing the flow is expected to approach this point. 
D, B and LI are functions of a,, s as (19) is autonomous. They are in fact polynomials 

of degree N .  D = 0 would in general represent a surface in the phase space. If an inte- 
gral curve crosses this surface (figure 15)’ the direction of increasing x appears either 
‘ sink-like ’ or ‘ source-like ’ and is physically unacceptable for describing the flow. 
However, an integral curve could cross the surface D = 0 a t  certain critical pointst of 
(B 2).  It should be noted that the origin of the phase space is a critical point. If there 
is a critical point other than the origin then D also vanishes there. This makes it 
possible for an integral curve to cross at  such critical points from one side of the 
surface D = 0 to the other. 

t Critical points are points where D, = 0 for rn = 1,2, . . . , N .  
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FIGURE 16. Phase plane of symmetric calculation for N = 2. The points 0 and P are critical points. 
D, = D, = 0 and D = 1 at the point 0 and D,  = D, = D = 0 at the point P. Arrows show direction 
of increasing 2. 

As an illustration the phase space of symmetric calculation for N = 2 is considered 
in which case D,, D ,  and D are given by 

D, = - 5*546u2,+ 74*79a,a,- 611.3~;- 1843ia,, 

D, = - 1.267~;  - 2 2 . 2 3 ~ ~  a2 - 203.6at - 5765a,, 

D = 0.1796~;- 0 . 1 7 9 3 ~ ~  u2 - 3.702~;  + 0 . 6 9 4 7 ~ ~  + 2 . 3 6 6 ~ ~  + 1. 

Figure 16 shows the ellipses D, = 0 and D, = 0. The direction of crossing of these 
ellipses by an integral curve is shown by vertical and horizontal arrows. A typical 
integral curve is also shown in the figure. 

The origin, which is a critical point, is a stable two-tangent node with a, axis as the 
tangent. Figure 16 shows another critical point P which is found to be a saddle point. 
The neighbourhood of the critical point P is considered below. 

Figure 17 shows a schematic of a saddle point singularity. Open arrows show the 
direction of x increasing if D were positive everywhere. Now let us draw the curve 
D = 0 passing through the saddle point. The direction of x increasing is then shown by 
filled arrows which shows that an integral curve can cross the curve D = 0 a t  the 
critical point P that is physically acceptable. The source- or sink-like behaviour of the 
integral curves are seen at  points other than P of the curve D = 0. 

The occurrence of D = 0 on an integral curve in general renders the calculation 
physically inadmissible. However, under some specific condition D = 0 can be 
admitted on an integral curve. Such integral curves are unlikely to represent a 
physical situation as their neighbouring integral curves would in general be physically 
inadmissible. Also, such curves are special to the phase space of N-term calculation. 
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FIGURE 17. Schematic of a saddle point singularity on D = 0. Filled arrows show direction of 
increming 2. Open arrows show direction of increasing z if D were greater than zero at  all points. 

If for a given initial condition the integral curve of N-term calculation encounters 
D = 0, it can be hoped that this difficulty can be overcome by including more terms in 
the calculation. 

Appendix C. Development length and pressure recovery coefficient 

The development length xd satisfies 

Development length 

If xo is a streamwise location after which the linearized solution ( 1 7 )  is applicable, then 
xd can be obtained from 

The contribution of the modes higher than the first even mode can be neglected as they 
decay more rapidly. xd can then be obtained from 

where the subscript el denotes the first even mode. 

Pressure recovery coeficient 
The asymptote to the curve pfx)  is given by 

p = -3x+P,. 

If the linearized solution (17)  is applicable for x 2 xo, P, can be calculated from 
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